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Abstract Genomic selection (GS) is a method for pre-

dicting breeding values of plants or animals using many

molecular markers that is commonly implemented in two

stages. In plant breeding the first stage usually involves

computation of adjusted means for genotypes which are

then used to predict genomic breeding values in the second

stage. We compared two classical stage-wise approaches,

which either ignore or approximate correlations among the

means by a diagonal matrix, and a new method, to a single-

stage analysis for GS using ridge regression best linear

unbiased prediction (RR-BLUP). The new stage-wise

method rotates (orthogonalizes) the adjusted means from

the first stage before submitting them to the second stage.

This makes the errors approximately independently and

identically normally distributed, which is a prerequisite for

many procedures that are potentially useful for GS such as

machine learning methods (e.g. boosting) and regularized

regression methods (e.g. lasso). This is illustrated in this

paper using componentwise boosting. The componentwise

boosting method minimizes squared error loss using least

squares and iteratively and automatically selects markers

that are most predictive of genomic breeding values.

Results are compared with those of RR-BLUP using five-

fold cross-validation. The new stage-wise approach with

rotated means was slightly more similar to the single-stage

analysis than the classical two-stage approaches based on

non-rotated means for two unbalanced datasets. This sug-

gests that rotation is a worthwhile pre-processing step in

GS for the two-stage approaches for unbalanced datasets.

Moreover, the predictive accuracy of stage-wise RR-BLUP

was higher (5.0–6.1 %) than that of componentwise

boosting.

Abbreviations

BLUP Best linear unbiased prediction

GEBV Genomic estimated breeding value

GS Genomic selection

RCBD Randomized complete block design

REML Restricted maximum likelihood

RR-BLUP Ridge regression BLUP

SNP Single nucleotide polymorphism

Introduction

Genomic selection (GS) is a method for predicting geno-

mic breeding values (GEBV) for plants or animals using

dense genetic markers, such as single-nucleotide poly-

morphisms (SNPs; Meuwissen et al. 2001). A number of

approaches have been used for GS including mixed models

(Meuwissen et al. 2001; Piepho 2009), machine learning

(Long et al. 2007; Ogutu et al. 2011) and Bayesian methods

(Meuwissen et al. 2001) and models accounting for poly-

genic effects (e.g. Calus and Veerkamp 2007; Hayes et al.

2009; Piepho 2009; Schulz-Streeck and Piepho 2010). All

these approaches normally undertake GS in two stages. The

first stage involves computing adjusted means for geno-

types which are then used in the second stage to predict

GEBVs based on markers. This is especially important in
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plant breeding where the genotypes are routinely tested in

different environments so that it is convenient to first

compute adjusted genotype means across the environments

of a target region and then use these means in GS. The

adjusted means can have variance–covariance structures of

varying complexity, depending on the details of the field

trial and the pattern of genotype–environment interaction.

In plant breeding experiments incomplete blocking and

spatial methods of analysis are often used and not all

genotypes are typically tested in all environments, leading

to heterogeneous variance–covariance between adjusted

means. However, all stage-wise models for GS typically

assume that means have independent errors. This assump-

tion constitutes an approximation that ignores correlation

among adjusted means. For these reasons, single-stage

analysis is often regarded as the gold standard because it

can fully account for the entire variance–covariance

structure of the observed data (Smith et al. 2001b).

Most plant breeding programs involve testing hundreds

of genotypes, thus requiring incomplete block or row-col-

umn designs (John and Williams 1995), in which not every

genotype is tested in each block. The extent of design-

induced unbalancedness often increases in series of trials

conducted over different environments when not all

genotypes can be grown in every environment due to

limited availability of seeds or other resources. Compared

with balanced designs, unbalanced designs complicate the

use of stage-wise approaches due to the increased likeli-

hood of heterogeneity and hence complexity in the vari-

ance–covariance between adjusted means. This makes it

much harder to account for the error variance–covariance

structure and hence to minimize information loss when

adjusted means are passed on from the first to the second

stage of a stage-wise analysis and thereby widens the dif-

ference between the single- and two-stage approaches

(Piepho et al. 2011, 2012a). Several weighting schemes

have been devised to enhance the performance of the stage-

wise relative to the single-stage approach, e.g. weighting

the adjusted means by the inverse of their squared standard

errors (Cullis et al. 1996) or weighting the adjusted means

by the diagonal elements of the inverse of their variance–

covariance matrix (Smith et al. 2001a). Modelling the

environment and block effects as fixed normally results in

relatively small covariances between the adjusted means so

that weighting the means by the inverse of their squared

standard errors often constitutes a reasonable approxima-

tion (Möhring and Piepho 2009). To recover inter-block

and inter-environment information, by exploiting infor-

mation from across blocks and environments, both the

block and the environment effects must be modelled as

random effects. This increases the covariances between the

adjusted means. Consequently, weighting the adjusted

means by the reciprocal of the inverse of their variance–

covariance matrix may be more efficient than using their

squared standard errors (Smith et al. 2001a). Evidence

from recent theoretical and simulation studies comparing

the approximate two-stage method of Smith et al. (2001a)

to single-stage analysis (Welham et al. 2010) suggests that

ignoring covariance information can incur substantial loss

of information. Although existing weighting schemes have

thus far focused on weighting the adjusted means per

environment before submission to the analysis across

environments, GS, QTL mapping, or association mapping

studies normally use adjusted means computed across

environments from a target region. This increases the

extent of heterogeneity of variances and covariances

between the adjusted means and thus the importance of

weighting to minimize information loss.

If feasible, a single-stage analysis is therefore preferable

to a classical two-stage analysis for GS (Cullis et al. 1998).

But a two-stage analysis is well suited to GS due to its

simplicity and computational efficiency (Möhring and

Piepho 2009). For GS this can be an important advantage

because the computing time for the single-stage analysis

can be considerable and dependent on the complexity of

the dataset, the method used and the number of markers

and genotypes involved. Moreover, it is common to use

mixed models for phenotypic analysis and exploit the

mixed model framework to represent the experimental

design for the phenotypic data. Whereas this has its own

advantages, some methods suitable for GS do not include

mixed modelling options. Since a single-stage analysis is

not always feasible or is computationally too burdensome

for complex datasets, especially on some computing plat-

forms such as the currently available versions of the SAS

software, because of a lack-of-memory problem, the two-

stage analysis is often the only feasible option. Piepho et al.

(2011, 2012a) presented a new stage-wise method, in

which all the information in the variance–covariance

structure of the adjusted means in the first stage is passed

on to the second stage, making the method fully efficient

relative to a single-stage approach. Piepho et al. (2011,

2012a) showed this stage-wise method to be efficient in

tests involving analyses of a series of field trials and con-

jectured that it may be similarly efficient for association

mapping and GS. We extend the new stage-wise approach

to genomic selection.

Many methods and models suitable for GS, such as

componentwise linear least squares boosting (Bühlmann

and Hothorn 2007), assume independently and identically

normally distributed (i.i.d.) errors. The new stage-wise

approach makes these procedures available for GS, by

rotating (orthogonalizing) the adjusted means and ensuring

that the assumption of i.i.d. errors is satisfied. Boosting is

an ensemble machine learning procedure that combines the

performance of many ‘‘weak’’ learners each of which
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performs only slightly better than random guessing to yield

a powerful learning algorithm, ‘‘weighted committee’’ or

‘‘ensemble’’ (Friedman and Hastie 2000; Bühlmann and

Hothorn 2007; Hastie et al. 2009). Boosting was first

introduced in the machine learning literature by Freund and

Schapire (1997). Boosting fits stage-wise additive models

using basis functions (Friedman and Hastie 2000). The

individual basis functions, each of which is a function of the

predictors, are called ‘‘weak’’ learners or base learners.

The base learners are weak in the sense that they usually have

low complexity, high bias (in most cases) and low variance

(Buja et al. 2007). The base learners are many and varied and

include classification and regression trees, least squares,

exponential family models, survival models, splines, etc.

There are many boosting algorithms for classification and

regression, including adaptive, stochastic gradient and

componentwise least squares boosting. However, all boost-

ing algorithms exploit two basic ideas, namely very flexible

fitting functions that capture local characteristics of the data

and then averaging over many iterations (Berk 2008). As a

result, boosting can also be usefully viewed, partly, as a

regularization (penalty-based) procedure, similar to such

shrinkage procedures as the lasso or ridge regression, which

enforce less shrinkage with each successive iteration (Berk

2008). At each iteration in boosting misclassified or poorly

fitted observations are given more relative weight which

forces the boosting algorithm to concentrate more on the

incorrectly classified or fitted observations in the next iter-

ation. The final fitted values from boosting are weighted

combinations of the many values from previous fitting

attempts; hence the term ‘‘weighted committee’’ or ‘‘ensem-

ble’’. Mathematical and technical details on boosting algo-

rithms can be found elsewhere (Friedman and Hastie 2000;

Bühlmann and Hothorn 2007; Hastie et al. 2009). Bühlmann

and Hothorn (2007) also present mathematical and algorith-

mic details of componentwise linear least squares boosting

used in this study.

Our main aim in this paper is to compare different stage-

wise approaches for GS. We expect a robust performance

of the new stage-wise method because it passes all the

information contained in the variance–covariance matrix of

the adjusted means from the first to the second stage and

ensures that the errors are approximately i.i.d., in contrast

to other two stage-wise methods, which either ignore or

approximate correlations among the means by a diagonal

matrix. Since the single-stage analysis is more accurate

based on theoretical and simulation evidence (Welham

et al. 2010), we used it as the gold standard for assessing

the performance of the stage-wise methods. We used ridge

regression best linear unbiased prediction (RR-BLUP)

(Piepho 2009) for this comparison because it is commonly

used and can be integrated into a mixed model framework.

In fact, for some other methods used in GS it would be

difficult, if not impossible, to devise a reasonable single-

stage analysis, because this requires a mixed model

framework to represent the experimental design for the

phenotypic data. Additionally, we show that the stage-wise

method of Piepho et al. (2011, 2012a) is not limited to

RR-BLUP alone but can be implemented using various

methods, such as boosting, and we use fivefold cross-valida-

tion to compare the performance of the stage-wise RR-BLUP

and componentwise boosting with linear least squares as base

learners or basis functions (Bühlmann and Hothorn 2007)

in GS.

Materials and methods

Dataset

We used two separate datasets (called A and B) each

containing 177 un-replicated double haploid maize (Zea

mays L.) lines (testcross genotypes) each derived from a

different biparental cross. However, one parent is common

to the two populations.We also combined both populations

to enable a combined analysis. The hybrid performance for

dry grain yield (tons/ha) for both datasets was tested with

the same common tester. The testcross genotypes were

tested in six locations in the same target region in 1 year,

but not every testcross genotype was tested in each loca-

tion. An augmented trial design with incomplete blocks

was used in each location to test the testcross genotypes. In

each location three to five incomplete blocks, each con-

taining a single column of plots, were used. The two

standard varieties but not the testcross genotypes were

replicated (i.e. planted in all blocks) in each location. As a

result, the standard varieties enable estimation of the inter-

block variance and separation of the block from the error

variance and are therefore said to connect the different

blocks. The standard varieties are intended solely to

facilitate the analysis of the testcross genotypes and are

themselves not used in predicting GEBVs.

Genotyping of all the genotypes was done by 768 SNP

markers spaced equally throughout the genome and the

information stored in a matrix M ¼ mikf g. The marker

covariate mik for the i-th genotype (i = 1, 2,…, G) and the

k-th marker (k = 1, 2,…, M) for biallelic SNP markers

with alleles A1 and A2 was set to 1 for A1A1, -1 for A2A2

and to 0 for A1A2, A2A1 and missing values. Heterozygous

markers were treated the same way as missing information,

because double haploids are completely homozygous.

Markers with more than 20 % missing values, or more than

5 % heterozygous genotypes, or with minor allele fre-

quency less than 2.5 % were excluded, resulting in 275

markers for dataset A, 201 for dataset B and 298 for the

combined dataset (A ? B).
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Ridge regression BLUP

Genomic selection was done using RR-BLUP, where the

genotypic value for the i-th genotype (uai) was predicted by

the following regression on the makers:

uai ¼
XM

k¼1

vkmik; ð1Þ

where mik is the regressor variable for the i-th genotype and

the k-th marker, while vk are the regression coefficients.

The regression coefficients are assumed to be random

sample from a common normal distribution, vk �Nð0; r2
aÞ.

The linear model in (1) can be rewritten in matrix form as

ua ¼ Mv, where uT
a ¼ ðua1; ua2; . . .; uaGÞ and vT ¼ ðv1;

v2; . . .; vMÞ. For single (mean-centred) observation yi per

genotype with independent residual errors ei having zero

mean and variance r2
e , the model for the observed data is

y ¼ ua þ e, where yT ¼ ðy1; y2; . . .; yGÞ and eT ¼ ðe1;

e2; . . .; eGÞ. Many authors (e.g. Ruppert et al. 2003; Piepho

2009) have shown that for RR-BLUP the genotypic vari-

ance given the covariates (markers) is varðgjMÞ ¼ r2
aMMT ,

where r2
a is estimated by REML. When the observations

are mean-centred, GEBVs are the predicted genotypic

values. Otherwise the model is extended by an intercept

and GEBVs then are estimated by the sum of intercept plus

the predicted genotypic values.

Overview of single-stage and two-stage approaches

We used different approaches to estimate GEBVs. First, we

used a single-stage analysis where the prediction of GEBVs

and the computation of adjusted genotypic means across

locations were done in one stage. Additionally, we used

three different two-stage approaches involving the predic-

tion of adjusted means for the testcross genotypes across

the different locations in the first stage and then using these

means for GS in the second stage. The adjusted means were

correlated because of the details of the field trial design. In

the first two-stage approach we simply ignored this corre-

lation. In the second approach, we used a weighting

scheme based on the diagonal matrix extracted from the

inverse of the variance–covariance matrix of the adjusted

means to approximate the error structure of the adjusted

means (Smith et al. 2001a). In the third, we rotated the

adjusted means so that the variance–covariance matrix of

the adjusted means was orthogonal (Piepho et al. 2011,

2012a).

Single-stage approach

The following linear mixed model was used for the single-

stage analysis,

y ¼ 1Naþ Zaua þ Zbub þ Zcuc þ Zdud þ ee; ð2Þ

where y is the observed data vector of yield per plot, 1N is an

N-dimensional vector with all elements equal to 1 and N is the

number of observation; a is the common intercept; Za, Zb, Zc

and Zd are design matrices for the random effects; ua is a vector

of random genotypic main effects, with var uað Þ ¼ r2
aMMT, M

representing the matrix with the marker information and MT

its transpose (Piepho 2009). Thus, var uað Þ is the marker-based

variance–covariance matrix of the genetic main effects. ub is a

vector of random location effects with varðubÞ ¼ Gb ¼ Ir2
b,

uc is a vector of random genotype-location effects with

var ucð Þ ¼ Gc ¼ Ir2
c , ud is a vector of random within-location

incomplete block effects, with var udð Þ ¼ Gd ¼ Ir2
d, and ee is

a vector of plot errors with var eeð Þ ¼ Re ¼ Ir2
e .

We did not model heterogeneous variances between the

different locations due to lack of replicates of the testcross

genotypes within locations. For simplicity of presentation,

we ignore the fact that standard varieties were used in model

(2). The standard varieties were used simply to aid the

analysis of the field trials and did not contribute to (i.e. were

blocked out from) the prediction of the genotypic main

effect, or the population mean. Therefore, we fitted a fixed

effect with a different level for each standard variety and one

level for all the testcross genotypes (Piepho et al. 2006).

Implicit in this model are the assumptions that the standard

varieties have different means, all testcross genotypes

belonging to the same population have the same population

mean and that the standard varieties are independent from

the testcross genotypes and from the other standard varieties.

For the combined analysis of both populations, a fixed

population effect was fitted. Note that the testcross geno-

types are modelled as random effects. The standard varieties

were blocked out when estimating genotypic main effects

through the use of a dummy variable equal to zero for all the

standard varieties and one for all the testcross genotypes.

Since the dummy variable was defined as a quantitative

variable, the genetic variance conditional on the markers was

zero for the standard varieties but was var uað Þ ¼ r2
aMMT for

the testcross genotypes.

The GEBVs for the testcross genotypes were predicted

by

GEBV ¼ 1Câþ ûa ð3Þ

where 1C is a C-dimensional vector of ones and C is the

number of testcross genotypes, â is the predicted mean for

all testcross genotypes, excluding the standard varieties,

and ûa is the vector of the predicted genotypic main effects.

Two-stage approaches

The analysis can also be done in two stages. To this end,

model (2) can be re-cast as
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y ¼ 1Naþ Zaua þ f ð4Þ

where f ¼ Zbub þ Zcuc þ Zdud þ ee and var fð Þ ¼ Rf ¼
ZbGbZT

b þ ZcGcZT
c þ ZdGdZT

d þ Re.

Model (4) is equivalent to model (2) but all random

effects except the genetic part are combined in one random

effect called f. Model (4) can be represented in two stages

(Piepho et al. 2011, 2012a). The first stage is given by

y ¼ X1l1 þ f ð5Þ

where l1 are the genotype means across locations and X1 is

an associated design matrix, which in this case is equal to

Za. At the second stage the adjusted means (l1) in (5) can

be calculated using the equation

l1 ¼ 1Caþ ua: ð6Þ

This means that upon replacing l1 in (5) with its

counterpart in (6), model (5) becomes equivalent to the

single-stage model (2).

The first stage of the two-stage approaches

At the first stage adjusted means for the testcross genotypes

are computed across the different locations (l̂1) using

model (5) and submitted to the second stage. Note that the

adjusted means of the standard varieties are excluded from

the dataset before submission to the second stage.

The second stage of the two-stage approaches

At the second stage, the adjusted means (l̂1) from the first

stage are used to predict GEBVs. For RR-BLUP the GE-

BVs were estimated in the second stage using the linear

mixed model

l̂1 ¼ 1Caþ ua þ ea; ð7Þ

where ea ¼ XT
1 R�1

f X1

� ��1

XT
1 R�1

f f and var eað Þ ¼

XT
1 R�1

f X1

� ��1

. Note that the expression for the error term

ea results from generalized least squares estimation in stage

one (Piepho et al. 2011, 2012a).

In the second stage, we either used ‘‘rotated means’’,

which will be explained below, or we simply used ‘‘unro-

tated means’’. For the latter approach, we followed two

options: The variance–covariance matrix of residual errors

was either approximated as var eað Þ ¼ Ir2
ea (unweighted

analysis) or as var eað Þ ¼ Dea (weighted analysis), where

Dea is a diagonal matrix, whose elements are equal to those

of the inverse of the variance–covariance matrix of the

adjusted means XT
1 R�1

f X1

� �
(Smith et al. 2001a).

Rotation of the adjusted means l̂�N l;W1ð Þ was done

using the spectral decomposition W�1
1 ¼ W

�1=2
1

� �2

, where

W
�1=2
1 is a square symmetric matrix of full rank (Rao et al.

2008). More precisely, we used the spectral decomposition

of var eað Þ ¼ XT
1 R�1

f X1

� ��1

¼ SKST, where S is a matrix of

eigenvectors and K is the corresponding matrix of eigen-

values. From this decomposition, we compute W1 ¼
SK�1=2ST, which can then be used to compute rotated

(orthogonalized) means as ~̂l1 ¼ W
�1=2
1 l̂1�N W

�1=2
1 l; I

� �

(Piepho et al. 2011, 2012a). For these rotated means the

following mixed model holds (Piepho et al. 2011, 2012a):

~̂l1 ¼ ~1Caþ ~ua þ ~ea; ð8Þ

where ~̂l1 ¼ W
�1=2
1 l̂1, l̂1 ¼ XT

1 R�1
w X1

� ��1
XT

1 R�1
w y, ~1C ¼

W
�1=2
1 1C, ~ua ¼ ~Mv ¼ W

�1=2
1 Mv with var ~uað Þ ¼ r2

a
~M ~MT

and ~ea ¼ W
�1=2
1 ea with var ~eað Þ ¼ I,

Hence, the rotated means have i.i.d. standard normal

errors. It is important to note that the rotation in (8) affects

only the elements of the design matrix of markers, but not

the estimated effects of the individual markers. This

facilitates fitting the effects using the model for RR-BLUP.

It can be shown (Piepho et al. 2011, 2012a) that the mixed

model (8) is equivalent to the mixed model (2) for the

single-stage analysis for known variance components. The

rotation approach is available in the R-Package rrBlup-

Method6 (Piepho et al. 2012b; Schulz-Streeck 2012).

GEBVs for the nonrotated means were estimated as

GEBV ¼ 1Câþ ûa ð9Þ

and for the rotated means as

GEBV ¼ ~1Câþ ~̂ua ð10Þ

where the terms are defined analogously as above.

Predicting non-phenotyped genotypes using the rotation

method

A major concern of genomic selection is to predict the

performance of the non-phenotyped testcross genotypes.

This is possible for all the methods we used but is shown

here only for the two-stage rotation method as an illustra-

tive example. Genotypic main effects (~̂ua) of the pheno-

typed testcross genotypes were first predicted using the

rotation method (8) and the marker information and the

resulting relationship used to predict the genotypic main

effects of the non-phenotyped testcross genotypes. Esti-

mates of the marker effects (m̂) were then obtained using

the following estimator (Henderson 1977):

m̂ ¼ ~MT ~M ~MT
� ��1

~̂ua ð11Þ

where ~̂ua is the vector of predicted genotypic main effects

of phenotyped testcross genotypes and ~M is the
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corresponding matrix containing the rotated marker

information. The genotypic main effects of the non-

phenotyped testcross genotypes were predicted using the

estimated marker effects as

ûaNP ¼ MNPv̂ ð12Þ

where ûaNP is the predicted genotypic main effects of the

non-phenotyped, and MNP is the corresponding design

matrices containing the marker information. Since the

design matrix of markers for the non-phenotyped testcross

genotypes (MNP) in (12) is not rotated, predictions for the

non-phenotyped testcross genotypes (ûaNP) are made on the

original scale. Furthermore, assuming the matrix ~M ~MT is

invertible, GEBVs can be calculated as

GEBVNP ¼ 1H âþ ûaNP; ð13Þ

where 1H is a H-dimensional column vector of ones, H is

the number of non-phenotyped testcross genotypes and â is

a vector of the predicted mean for all phenotyped testcross

genotypes.

However, if ~M ~MT is not invertible the following method

can be used to estimate genotypic values for the non-phe-

notyped testcross genotypes. First, the marker effects are

estimated by (Searle et al. 1992):

v̂ ¼ r̂2
a

~MTV̂�1 ~̂l1 � ~1Câ
� �

; ð14Þ

where v̂ is the vector of BLUPs of the marker effects, r̂2
a is

the variance of the marker effects, V̂ is the estimated

variance–covariance matrix of the response variable of the

rotated adjusted means (~̂l1), and ~1C is a C-dimensional

column vector obtained by rotating the vector with all

elements equal to one.

Note that we can always predict random effects of the

markers (v) because V̂ is generally positive-definite even

when ~M ~MT is not. The genotypic value of non-phenotyped

testcross genotypes can then be estimated by

GEBVNP ¼ 1H âþMNPv̂ ð15Þ

where the terms are defined similarly as for the preceding

models (11, 12 and 13).

Boosting

After rotating the adjusted means to obtain approximately

i.i.d. errors, GS is no longer limited to methods able to

account for correlated error structures such as RR-BLUP

alone but can be implemented using various other methods

such as boosting. We illustrate this here for componentwise

boosting.

We used the same regression model for componentwise

linear least squares boosting as for RR-BLUP, but L2-

boosting for linear models is more akin to ordinary least

squares and thus to fixed effects modelling for marker

effects v (Bühlmann and Hothorn 2007). Our stage-two

model for boosting is

l̂1 ¼ 1CaþMvþ ea ð16Þ

Note that in fitting (16) and other boosted models in this

paper only the best supported predictor is selected and

fitted at each iteration of the boosting algorithm thus enabling

automatic variable selection because some predictors will

have estimated coefficients for the markers exactly equal to

zero in the final model (Bühlmann and Hothorn 2007;

Boulesteix and Hothorn 2010). Moreover, from regression

theory the least squares loss function is best when errors are

i.i.d.

We used componentwise linear least squares as a base

procedure. Boosting componentwise linear least squares

within a generalized linear model framework enabled

automatic selection of predictor variables with the greatest

influence on the response variable (Bühlmann and Hothorn

2007). Since boosting iteratively adds basis functions (base

learners) in a greedy fashion such that each additional base

learner further reduces the selected loss (error) function

(Hastie et al. 2009), prediction is achieved using regression

coefficients for predictors retained in the model at the end

of the boosting iterations. We used a gradient boosting

algorithm, assuming the Gaussian distribution for mini-

mizing squared-error loss in the R package mboost (Hofner

2010). We determined the main tuning parameter, the

optimal number of iterations, using cross-validation and the

step-size length using a grid search.

For boosting independent genotypic means (l̂1), e.g.

adjusted means form randomized complete block designs,

the adjusted means are mean-centred (Bühlmann and

Hothorn 2007), corresponding to the model

ðl̂1 � �̂l1Þ ¼ ðM � �MÞvþ ðea � �eaÞ: ð17Þ

where l̂1 is the vector of the adjusted means with a mean

vector �̂l1; M is the design matrix of marker covariates, with

a matrix of means for each marker �M and v is a vector of

the regression coefficients of markers.

As a result of the centring, the intercept drops out of the

model. For simplicity (17) can be rewritten as

l̂1ðcentreÞ ¼ MðcentreÞvþ eaðcentreÞ ð18Þ

where the subscript centre indicates that the vector or

matrix has been centred as explained above.

We boosted the following rotated model, where the

rotation was done as for the RR-BLUP model:

~̂l1 ¼ ~1Caþ ~Mvþ ~ea ð19Þ

where ~1C is the C-dimensional column vector obtained by

rotating the vector with all elements equal to one. Note that

the elements of ~1C do not usually equal one. To boost this
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model using componentwise linear least squares, we

combined the standard linear model with the boosting

algorithm as proposed by Boulesteix and Hothorn (2010) as

follows. We first regressed the rotated observed values (~̂l1)

against the rotated intercept vector (~1C) and the usual

intercept (c) to obtain predicted values for each instance of
~̂l1 as well as estimates of the regression coefficients (ĉ; â)

using the regression machinery for standard generalized

linear models. We then supplied the vector of predicted

values for (1C ĉþ ~1Câ) as an offset in the boosting

algorithm. Each predictor variable in the design matrix ~M

in (19) was mean-centred (i.e. ~MðcentreÞ) in the boosting

algorithm (Bühlmann and Hothorn 2007). Hence the full

boosted model was

~̂l1 ¼ ð1C ĉþ ~1CâÞ þ ~MðcentreÞvþ ~eaðcentreÞ ð20Þ

where 1C ĉþ ~1Câ is the offset and the subscript centre

indicates that the vector or matrix has been mean centred.

Note that the rotated model in (19) does not require an

intercept as such, so the added regression on a common

intercept c in (20) corresponds to mean-centreing, which is

generally recommended but is also hard to avoid in con-

temporary implementations of component linear least

squares boosting, such as the algorithm used in the mboost

package (Hofner 2010), that require an intercept as an

integral part of the boosted model and do not permit

blocking out the intercept during model fitting as an option.

Boosting was used to obtain estimates of v (i.e. v̂) only,

since the offset was held fixed.

Comparison of single-stage and two-stage approaches

We compared the single- and two-stage approaches using

RR-BLUP only. The single-stage approach served as the

gold standard for evaluating the performance of the two-

stage methods as follows, thus obviating the need to first

split testcross genotypes into training and validation sets.

The Pearson and Spearman rank correlation coefficients

between the GEBVs predicted by the single- and two-stage

methods were used for the evaluation. GEBVs predicted

using rotated means were back-transformed through pre-

multiplication by W
1=2
1 , so that all predictions were com-

pared on the same scale. As a further evaluation criterion,

we calculated the absolute deviation between the values

predicted from the single- and two-stage analyses. The

minimum, lower and upper quartiles, median, and maxi-

mum values of the absolute deviations of predictions of the

single-stage approach from those of the non-rotated,

weighted and rotated two-stage approaches were compared

using box plots. Furthermore, we compared the two-stage

approaches to the single-stage approach to assess the extent

to which they selected the same n (n = 1,…,100) best

testcross genotypes as the single-stage approach did.

Comparison of RR-BLUP and boosting using

cross-validation

We compared the predictive accuracies of RR-BLUP and

boosting using cross-validation (CV) only for the stage-

wise analysis of the rotated means, which was identified as

the stage-wise method of choice based on comparing the

single- and two-stage approaches. A fivefold CV involving

randomly splitting the rotated adjusted means into five

subsamples, one of which was held out as a validation set

(Val) at a time, was undertaken to evaluate predictive

accuracy. The remaining four subsamples were combined

into one training set (T). This was repeated five times, thus

allowing each subsample to be the validation set once. This

entire process was repeated ten times, yielding a total of 50

replicate GS predictions. For boosting, tuning parameters

were optimized using the training set only.

An assumption integral to the proper conduct of the

k-fold CV, where k is the number of random subsamples

(e.g. 5 in our case), is that the errors are i.i.d. and hence that

the training and validation sets are independent (Arlot and

Celisse 2010). To satisfy this assumption, the adjusted

means of all the testcross genotypes were rotated prior to

splitting the dataset into training and validation sets.

For RR-BLUP the model (8) was specialized for the

training set only as

~̂lT ¼ ~1Taþ ~uaT þ ~eaT; ð21Þ

where the subscript T indicates that only the training set is

being used. The corresponding predictions for the

validation set were obtained from

~̂uaVal ¼ ~MVal
~MT

T
~MT

~MT
T

� ��1~̂uaT; ð22Þ

where the subscript Val indicates that only the validation

set is being used.

GEBVs were then calculated by

GEBVVal ¼ ~1Valaþ ~̂uaVal: ð23Þ

For boosting we used model (20), specialized for the

training set only as

~̂l1T ¼ ð1Tĉþ ~1TâÞ þ ~MTðcentreÞvþ ~eaT ð24Þ

The predictions of ~̂l were then obtained from

GEBVVal ¼ ð1Valĉþ ~1Valâ� �~MT v̂Þ þ ~MValv̂ ð25Þ

where �~MT is a matrix of means for each marker for the

training set. The term �~MTv̂ is subtracted from the intercept

because in (24) the design matrix for the effect v is mean

centred. Thus the design matrix ~MTðcentreÞ in (24) can be
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rewritten as ~MTðcentreÞ ¼ ~MT � �~MT. In (25) the non-centred

design matrix of the marker for the validation set is used

thus �~MTv̂ must be subtracted.

Measures of accuracy via cross-validation

The means of the Pearson correlation coefficients (n = 50

replicates) between the rotated adjusted means from the

first stage (~̂l1Val) and their corresponding predicted values

(GEBVV) using models (23) and (25) from the validation

sets were used as measures of prediction accuracy. In each

validation set 35 or 36 testcross genotypes were used for

dataset A and B, but 70 or 71 for the combined dataset. A

t test was used for head-to-head comparison of RR-BLUP

and boosting based on the 50 replicate Pearson correlations

derived from the 50 cross-validation runs.

Results

Comparison of single-stage and two-stage approaches

The variances and covariances of the adjusted means were

heterogeneous within each dataset (Fig. 1), contrary to

expectation for balanced data, thus indicating a departure

from the common assumption of i.i.d. errors for the

adjusted means.

Fits of the non-rotated and the rotated two-stage anal-

yses were quite similar to each other and to the single-stage

analyses for the combined and each of the two datasets

(Table 1; Figs. 2, 3). This means that violation of the i.i.d.

assumption had relatively small adverse impact on per-

formance of the classical stage-wise approach. However,

the predictions of the rotated two-stage analysis, for which

Fig. 1 Histograms of the

variances and covariances

between the adjusted means.

Left panels covariances, right
panels variances, top panels
dataset A, middle panels dataset

B, bottom panels dataset

A ? B. The relative proportions

of the variances and covariances

are shown on the vertical axes
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approximate i.i.d. normal errors can be assumed (Piepho

et al. 2011, 2012a), were more similar to those of the

single-stage analysis for all comparison criteria, namely

Pearson and Spearman correlation coefficients and absolute

deviations (Table 1; Fig. 3). The median absolute devia-

tion for the non-rotated methods was 14–25 times larger

than that for the rotated method. Moreover, the absolute

deviation also revealed some substantial differences

between predictions of the single-stage and the non-rotated

two-stage methods, and attained a maximum value within

the range 0.121–0.181, depending on the non-rotated

method and dataset used. This difference is non-negligible

when considered relative to the recorded range of variation

for predictions of the single-stage analysis. Using a diag-

onal weighting matrix (Smith et al. 2001a) did not produce

any discernible improvement over unweighted analysis for

the classical two-stage method. Furthermore, the two non-

rotated two-stage methods tended to not select fewer than

the first n (n = 1,…,100) best genotypes selected by the

single-stage approach in the majority of cases than the

rotation approach (Fig. 4). The results for the single-stage

and rotation approaches were very similar but differed

from those for the two-stage non-rotated approaches. For

instance, of the first 20 % of the genotypes that the single-

stage approach selected as the best for datasets A and B the

rotation method missed none, whereas both the unweighted

and weighted two-stage approaches missed three. Simi-

larly, of the first 20 % testcross genotypes selected by the

single-stage approach as the best for the combined dataset,

the rotation, weighted and unweighted approaches missed

zero, five and three, respectively. Overall, the prediction of

the rotated method and the single-stage analysis were

nearly identical, suggesting that rotation is a worthwhile

pre-processing step in GS for the two-stage approach.

Comparison of boosting and RR-BLUP

The mean Pearson correlation coefficient between the

GEBVs and the observed values in the validation set

ranged from 0.476 to 0.710 for the rotated means,

depending on the dataset and method used (Table 2). For

both methods prediction accuracy was higher for dataset

A than B, whereas RR-BLUP marginally outperformed

boosting on both datasets by between 5.0, 6.1 and 6.0 %

for the combined dataset (Table 2). The differences were

highly significant for dataset A (P = 0.0002) and the

combined dataset A ? B (P B 0.0001), but only mar-

ginally significant for dataset B (P = 0.0506) based on

the t test. On average, 61 % of the 20 % best testcross

genotypes were selected by RR-BLUP and 59 % by

boosting for dataset A in each validation set. For dataset B

only 44 % of the 20 % best testcross genotypes were

selected by RR-BLUP and 47 % by boosting. For the

combined dataset 51 % of the 20 % best testcross geno-

types were selected by RR-BLUP compared with 49 % by

boosting. Componentwise boosting selected widely dif-

ferent numbers of markers as the most relevant and pre-

dictive of GEBVs, depending on both the dataset (A, B or

A ? B) and the training subset used. Across the 50 rep-

licate training sets the selected number of markers ranged

between 23 and 86 for dataset A, 5 and 88 for dataset B

and 53 and 125 for the combined dataset.

Table 1 Pearson (lower triangle) and Spearman (upper triangle) correlations between predictions of single- and two-stage analyses

Single-stage Two-stage non-rotated

(unweighted analysis)

Two-stage non-rotated

(weighted analysis)

Two-stage

rotated

Dataset A

Single-stage – 0.99619 0.99669 0.99997

Two-stage non-rotated (unweighted analysis) 0.99576 – 0.99807 0.99603

Two-stage non-rotated (weighted analysis) 0.99602 0.99759 – 0.99688

Two-stage rotated 0.99987 0.99546 0.99620 –

Dataset B

Single-stage – 0.99283 0.99363 0.99999

Two-stage non-rotated (unweighted analysis) 0.99132 – 0.99908 0.99329

Two-stage non-rotated (weighted analysis) 0.99209 0.99848 – 0.99411

Two-stage rotated 0.99995 0.99180 0.99258 –

Dataset A ? B

Single-stage – 0.99397 0.99584 0.99996

Two-stage non-rotated (unweighted analysis) 0.99567 – 0.99817 0.99392

Two-stage non-rotated (weighted analysis) 0.99717 0.99862 – 0.99575

Two-stage rotated 0.99999 0.99559 0.99710 –
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Discussion

The new two-stage approach based on rotating the means

was nearly perfectly correlated with and slightly more

similar to the single-stage analysis than the two classical

two-stage approaches based on non-rotated means, similar

to the findings of Piepho et al. (2011, 2012a), from their

analysis of a series of field trials. The benefit of rotation

was greater in this study than in that of Piepho et al. (2011,

2012a), in which rotation was done prior to the analysis

across environments. This is because, unlike the usual first

stage of stage-wise analyses which involves computation

of adjusted means within environments, our first stage

involved computation of adjusted means across environ-

ments. This is more likely to result in a more complex

variance–covariance structure due to unbalancedness in the

trial design arising from not all testcross genotypes being

tested in all environments. Hence, even though the rotated

and non-rotated stage-wise approaches had similar corre-

lations between their predictions and that of the single-

stage approach, the absolute deviation revealed a decidedly

higher accuracy for the rotated than for both the non-

rotated stage-wise approaches. Moreover, the two-stage

approaches tended to select fewer testcross genotypes than

those selected by the single stage-stage analysis as the best.

Even so, results of the rotation approach were more similar

Fig. 2 Comparisons of predictions of single- and two two-stage

approaches. Left panels non-rotated means (unweighted analysis),

middle panels non-rotated means (weighted analysis), right panels

rotated means across the two different datasets (top panels dataset A,

middle panels dataset B, bottom panels dataset A ? B)
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Fig. 3 Box plots of absolute deviations between predictions of single- and two-stage analyses. Left panels dataset A, middle panels dataset B,

right panels dataset A ? B. The box plots display the minimum, lower and upper quartiles, median and maximum of the absolute deviations

Fig. 4 Number of the first n (n = 1,…,100) testcross genotypes selected as best by the single-stage analysis that were missed by each of the

three two-stage approaches for datasets A, B and A ? B. Top panels dataset A, middle panels dataset B, bottom panels dataset A ? B
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to those for the single-stage approach than were the results

for the non-rotated two-stage approaches. This finding also

underlines the value of using multiple accuracy metrics in

GS studies.

The slight difference between the new two-stage and

single-stage analyses occurred because the variance com-

ponents were unknown and so had to be estimated from the

data. Results would be identical with known variance

components. The difference between the single-stage and

the new two-stage method would be inflated if too few

degrees of freedom were available to estimate the variance

components. For our dataset lack of replication of testcross

genotypes within locations precluded modelling of heter-

ogeneous variances among different locations based on the

testcross genotypes. However, the standard varieties each

of which had three to five replicates within each location

enabled modelling of variance heterogeneity among loca-

tions. As expected, the estimated heterogeneous error

variances were imprecise due to few replicates within

locations, thus amplifying differences between the predic-

tions of the single- and two-stage approaches. Even so, the

rotated approach remained more similar to the single-stage

approach than the other stage-wise approaches were

(results not shown). Weighting the adjusted means in the

second stage by the diagonal elements of the inverse of

their variance–covariance matrix (Smith et al. 2001a) only

slightly improved model performance, similar to expecta-

tions based on findings from earlier analyses of a series of

field trials (Möhring and Piepho 2009; Smith et al. 2001a).

Consequently, weighting will not always substantially

improve prediction.

Our results raise the question as to what are the impli-

cations of the choice of experimental design for GS. If the

trial design at each location is a randomized complete

block design (RCBD) and all genotypes are tested in all

locations, then all pairs of genotypes are equally correlated.

In this case, single-stage and most two-stage methods

coincide, provided that variance components are known.

In particular, covariance among adjusted means can be

accounted for by the location main effect (Möhring and

Piepho 2009). The RCBD is the only practically relevant

design that would allow ignoring the covariances among

adjusted means. This might suggest that RCBD should be

the preferred design in genomic selection, but such a

suggestion is unwarranted for several reasons. In most

plant breeding programs, the number of testcross genotypes

to be tested is in the hundreds. With such a large number of

testcross genotypes, complete blocking is well known to be

utterly inefficient, and it is for this reason that most

breeders will use some form of incomplete blocking. If

trials are fully replicated, some kind of resolvable incom-

plete block design or row-column design is usually pre-

ferred (John and Williams 1995). Moreover, efficiency of

analysis is often improved by the use of spatial methods

(Qiao et al. 2000). Both incomplete blocking and spatial

methods of analysis cause heterogeneity of covariance

between adjusted means. Thus, with the currently preferred

experimental designs and analysis methods, heterogeneity

of covariance will remain an issue in plant breeding pro-

grams. The method proposed in this paper provides a

means to efficiently confront this challenge in the GS

context.

We decided to take the location main effect as random.

In series of experiments, location main effects are typically

very large, as they were for both the datasets we analysed,

so it hardly makes any difference whether location main

effects are taken as fixed or random, even when the number

of locations is small (Piepho and Möhring 2006).

We have focused on results of the RR-BLUP for the

single-stage analysis because it is much easier to imple-

ment than componentwise linear least squares boosting.

For single-stage boosting, one would need to add a mixed-

model component that reflects the field-trial design, and

this mixed-model component would need to be included in

boosting iterations, which is possible in principle (Tutz and

Reithinger 2007), but computationally prohibitive in

practice.

A comparison of the prediction accuracies of the rotated

and non-rotated methods using CV was not feasible due to

the absence of true breeding values. It turned out that we

could not use the same benchmark with both the rotated

and non-rotated means, because the appropriate benchmark

for the rotated approach are the rotated adjusted means

whereas for the non-rotated approaches it is the non-rotated

adjusted means. Besides, for non-rotated means the basic

assumption of the k-fold CV and its leave-one-out variant

that the errors are i.i.d. and hence that the training and

validation sets are independent (Arlot and Celisse 2010) is

not met. The dependency between the adjusted means

arises from the unbalancedness of the field trial design and

use of the standard varieties. Thus, provided the same

standard varieties are used with the training and validation

Table 2 Prediction accuracies of ridge regression BLUP and

boosting

Dataset Mean Pearson correlation P value of

two-sided t test
RR-BLUP Boosting

A 0.710 0.649 0.0002

B 0.526 0.476 0.0506

A ? B 0.673 0.614 \0.0001

Prediction accuracy is calculated as the Pearson correlation between

rotated observed and predicted values in the validation set for each

replicate and then averaging the correlations over the 50 replicates

using fivefold cross-validation. The different methods were compared

by a two-sided t test
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sets, separately estimating adjusted means for both datasets

will not eliminate the dependency. Additionally, for field

trial designs with replications, splitting the raw data into

training and validation sets prior to estimating adjusted

means separately for each set is not always possible nor

advisable because the trial design structure will not be

preserved as desired. The ideal situation would be to have

an independent validation dataset. Rotating the entire

dataset before splitting it into the training and the valida-

tions is thus necessary to ensure that the training and val-

idation sets are independent as required for valid CV.

Besides prediction, results of hypothesis tests can also

be badly biased if the covariance structure of the adjusted

means is ignored in a stage-wise analysis. For GS, often a

pre-selection of markers is done, where the effect of each

marker is tested (Hayes et al. 2009; Macciotta et al. 2009;

Schulz-Streeck et al. 2011). Such tests assume i.i.d errors,

which would be fulfilled if the means are rotated, but not if

correlations between the adjusted means are ignored, or

weighted.

In meta-analysis of individual patient data in medical

trials, a closely related field, it is a standard procedure to

carry the full variance–covariance forward in stage-wise

analysis because this is fully efficient. Rotation, which is

mainly a trick to speed up computations, is not an issue in

medical trials because the number of treatments is typically

small. But our rotated analysis is essentially identical to

what is commonly done in meta-analysis (Mathew and

Nordström 2010; Van Houwelingen et al. 2002). In two-

stage analysis of plant breeding trials, however, covariance

information has been either ignored or has been accounted

for by approximative methods such as those considered in

Smith et al. (2001a) and Möhring and Piepho (2009). The

simulation results by Welham et al. (2010), where single-

stage analysis is compared with the approximate two-stage

method of Smith et al. (2001a), indicate that ignoring

covariance information may entail a substantial loss of

information.

Although more preferable, at least in theory (Cullis et al.

1998; Welham et al. 2010), the single-stage analysis can be

hard to implement with massive datasets due to its high

computational demands. It is therefore noteworthy that the

results of the computationally more efficient new two-stage

method were nearly perfectly correlated with those for the

single-stage analysis and that all the two-stage approaches

also had similar predictions. Moreover, the rotation

approach slightly outperformed the classical two-stage

approaches. Nonetheless, further simulation studies and

empirical analyses are needed to determine to what extent

rotation of the data can improve predictive accuracy, in

particular for more complex and unbalanced datasets in

which testcross genotypes from many different crosses are

used and are tested in many different environments, so that

the variance–covariance structures for the adjusted means

may show much more complex patterns than those in our

datasets.

Componentwise boosting can be used in stage-wise

analyses for GS, QTL mapping and association studies

with large numbers of markers because its performance on

the two particular datasets and the combined dataset con-

sidered here was competitive with that of RR-BLUP; its

iterative algorithm is computationally efficient as it obvi-

ates the need to invert massive matrices of marker covar-

iates, and it automatically selects the most relevant and

predictive marker subsets. Since componentwise boosting

involves automatically selecting the most significant and

relevant markers, its performance on our two data sets was

somewhat poorer than that of RR-BLUP probably because

of the low number of markers, but would be expected to

improve with increasing number of markers. Compared

with RR-BLUP, an infinitesimal model in which each

marker is assumed to have a small effect on the trait of

interest, componentwise boosting selects the most relevant

markers for a given trait and may, therefore, be expected to

be more precise for traits controlled by a fewer QTL with

larger effects. Yet, even though relatively low (ca. 50 %) in

absolute terms, both methods selected similar proportions

of the 20 % best testcross genotypes in the validation sets.

Also, using simulated data with about 10,000 markers,

Ogutu et al. (2011) showed that the prediction accuracy for

GS using boosted regression trees that differ from com-

ponentwise boosting was similar to that for RR-BLUP.

Whereas Ogutu et al. (2011) used boosted regression trees,

which use all the SNP markers and are able to account for

arbitrarily high-order interactions to perform genomic

prediction, componentwise linear least squares boosting

does simultaneous automatic marker selection. Compo-

nentwise boosting also required more time as RR-BLUP

did, even though the pre-processing step, which is identi-

cal, took identical times.

For both methods prediction accuracy was higher for

dataset A than for B despite the similarity in the numbers of

genotypes and markers in both datasets. This inconsistency

in prediction accuracy between the two populations is

similar to findings of other studies (e.g. Albrecht et al.

2011; Heslot et al. 2012).

Overall, the new stage-wise approach with rotated

(orthogonalized) means was slightly more similar to the

single-stage analysis than the classical two-stage

approaches based on non-rotated means. This suggests

that rotation is a promising step in GS. RR-BLUP showed

slightly higher prediction accuracy than componentwise

boosting on the two particular datasets, but the more

important point to note is that rotation enables methods

that assume i.i.d errors such as boosting to be applied

to GS.
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